Use of causative variants and SNP weighting in a single-step GBLUP context

Breno Fragomeni¹, Lourenco DAL¹, Legarra A², Tooker ME ³, VanRaden PM³, Lawlor, T.⁴, Misztal I¹

¹University of Georgia, Athens, USA

²INRA, Castanet-Tolosan, France

³AGIL ARS-USDA, Beltsville, USA

⁴American Holstein Association, Brattleboro, USA

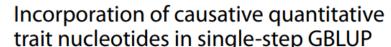
Motivation

- Decreasing costs of whole genome sequence
- Revived interest in causative variants for prediction
- Several authors are finding and using causative variants
 - No improvement :
 - Binsbergen et al., 2015 and Erbe et al., 2016
 - Up to 5% improvement:
 - Brondum et al. 2015 and Vanraden et al., 2017

Fragomeni et al. Genet Sel Evol (2017) 49:59 DOI 10.1186/s12711-017-0335-0

RESEARCH ARTICLE

Open Access



Breno O. Fragomeni^{1*}, Daniela A. L. Lourenco¹, Yukata Masuda¹, Andres Legarra² and Ignacy Misztal¹

- ssGBLUP was able to reach accuracies close to 1 in simulation
 - Simulated QTN position and effects known
 - GWA estimated weights had limited impact
- GWA Methodology no limitation in minimum and maximum weights (Zhang et al., 2016)

Objective

 Test different SNP weighting methods in GBLUP and ssGBLUP in field data with the inclusion of causative variants

Field Data

- 4M Records for Stature
- 3M Cows
- 4.6M Animals in pedigree
- $h^2 = 0.44$
- 27k Genotyped Sires
 - 54k SNP
 - 54k SNP + 17k Causative Variants (VanRaden et al., 2017)

Analysis

• GBLUP

- Multi-step approach
- Daughter deviation as phenotypes
- Genomic Relationship Matrix
- Homogeneous or heterogeneous residual variance – different reliabilities

• ssGBLUP

- Same model as national evaluation for type traits
- No deregressions
- Matrix combining pedigree and genomic information (H)

Weighted genomic relationship matrix

$$\mathbf{G} = \mathbf{Z}D\mathbf{Z}'\frac{\sigma_s^2}{\sigma_a^2} = \frac{\mathbf{Z}D\mathbf{Z}'}{\sum_i 2p_i q_i}$$

Default

• $\hat{d}_i = 1$

• (VanRaden et al., 2008)

Linear weights

• $\hat{d}_i \sim \sigma_{SNP_i}^2$

(Zhang et al., 2010)

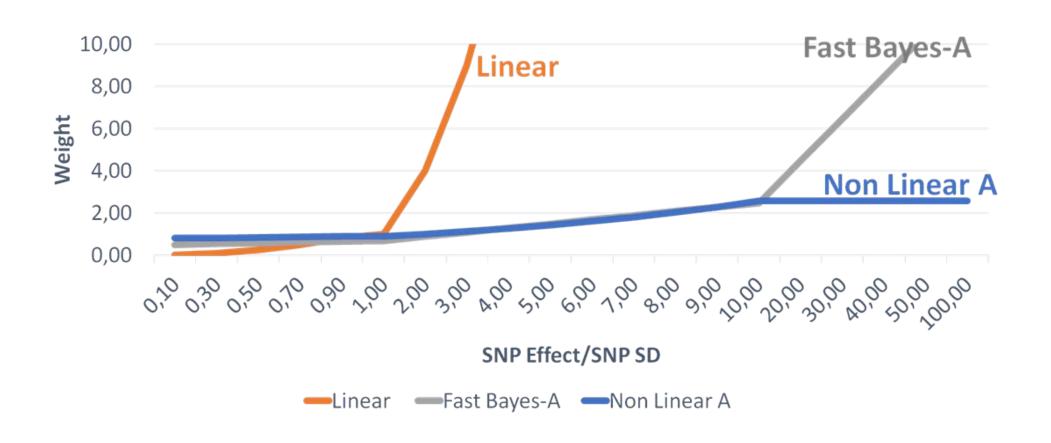
- Non-linear A weights
- $\bullet \ \hat{d}_i = 1.125^{\frac{|\widehat{u_i}|}{sd(u)} 2}$
 - Value capped at 10
- (VanRaden et al., 2008)

• Fast-Bayes A

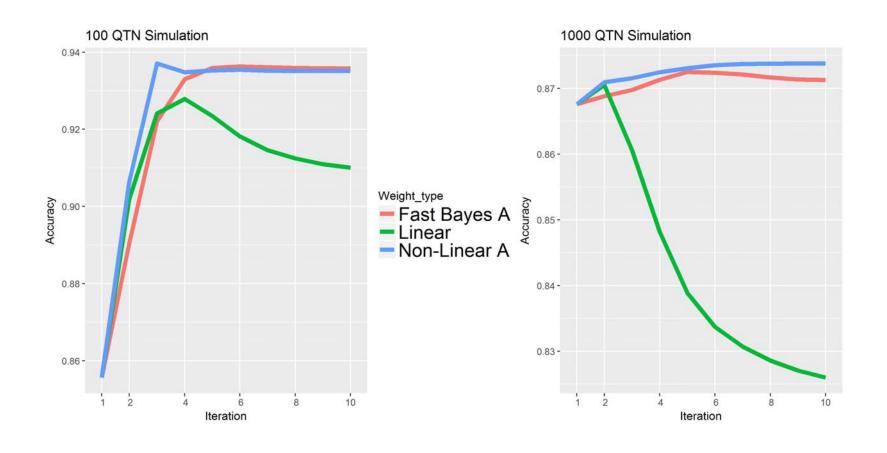
 $\hat{d}_i = \frac{\hat{u}_i^2 + df * S^2}{df + 1}$

(Sun et al., 2012)

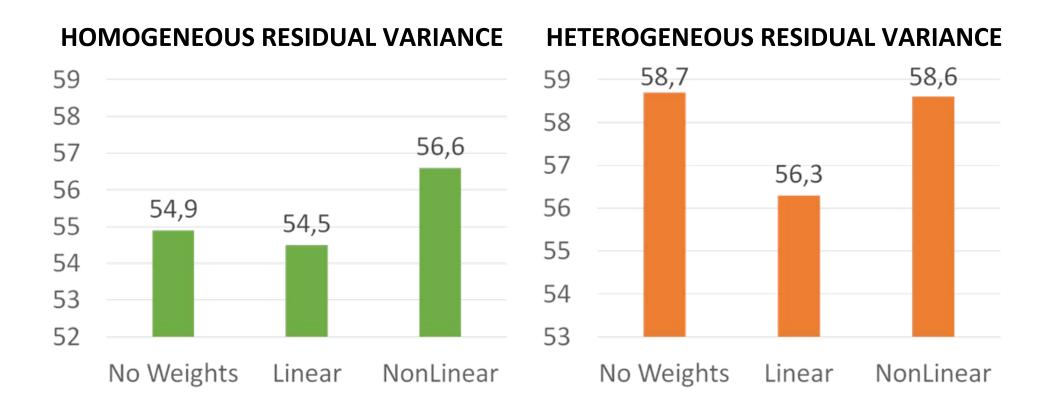
Weight matrix elements



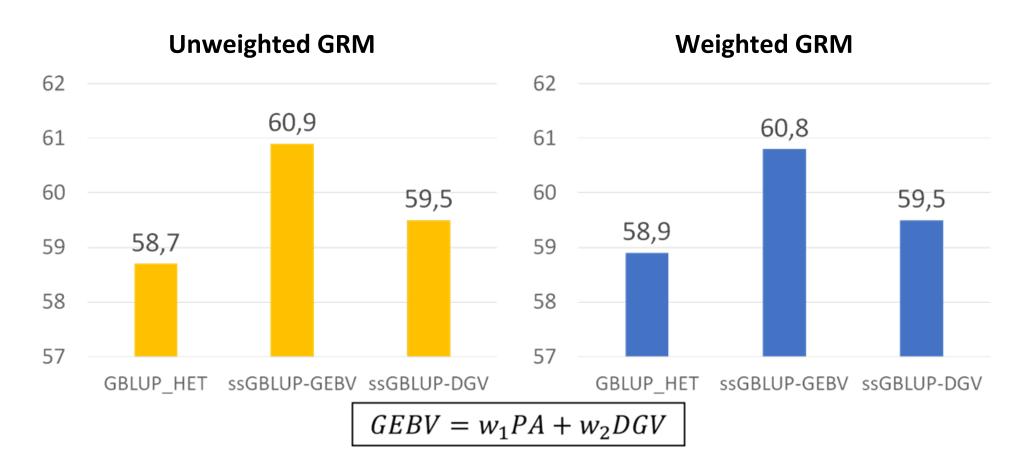
Simulation results



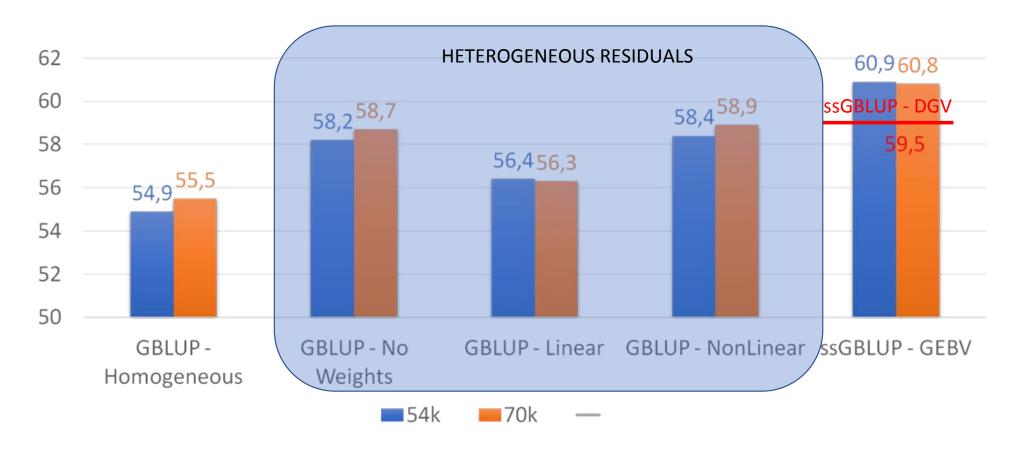
GBLUP – 54K SNP - Reliabilities



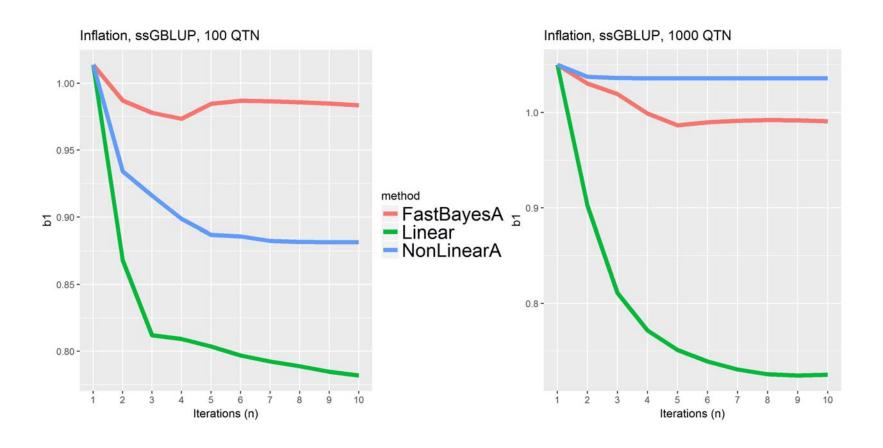
GBLUP and ssGBLUP – 54K SNP - Reliabilities



Including causative variants



Inflation coefficient: b₁



Conclusions

- Gains with causative variants have more impact in GBLUP than in ssGBLUP
 - More data is used in single-step methodology, therefore impact of prior is less important
 - Sequence data might mask or fix methodology problems
- Non-linear methodology is better for weighting marker effects than linear weights
- Estimating weights in single-step GBLUP is still a research topic